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Abstract—Dynamic environment representation is an
important research task in the field of advanced driving
assistance systems. Usually, the tracking process idluenced
by several factors, such as the unpredictable and defmable
nature of the obstacles, the measurement uncertaingeor the
occlusions. This paper presents a stereo-vision basapproach
for tracking multiple objects in unstructured environments.
The proposed technique relies on measurement data pided
by an intermediate grid map and the object delimiters
extracted from this grid. We present a particle filter based
tracking solution in which a particle state is describd by two
components: the dynamic object parameters, and the oggt's
geometry. In order to solve the high dimensionality tate space
problem a Rao-Blackwellized Particle Filter is used. Te
proposed method takes into consideration
uncertainties and relies on a weighting mechanism based the
particle alignment error.

|l. INTRODUCTION

the stereo

the obstacle’s position is determined by its centemass.
However, in the case of unstructured environments, it is
difficult to use constrained models. The tracking procesg m
lead to incorrect results when the target pose estimad
affected by occlusions or by changes in its geometry. Iir orde
to overcome this problem, various algorithms for mowdngd
deforming objects are proposed [16][17]. Typically, the
model shape is represented implicitly [17], or by a set of
fixed number of points. In particular, the authors I7][
describe a tracking method for slowly deforming and moving
contours that are represented implicitly. Isard and Bl&&g [
propose the CONDENSATION algorithm for tracking
parametric curves.

Most often, the object tracking approaches rely on
Kalman filters [6], Particle filters [14][16][18] or hyiadl
methods [20][21]. The traditional Kalman filter reperts an
optimal estimator in which the posterior distribution is
modeled by a Gaussian function. However, the classical

Modeling and tracking of dynamic entities is an importarkalman filter solutions are only applicable on linegstems
research task in the field of driving assistance systenyith unimodal distributions. As an alternative, the iphet
Typically, the tracking mechanism relies on extractingta sfiter approaches approximate the state space bylectioh
of relevant features from the scene and estimating $ke® of N discrete samples, called “particles”. Each particle
over time. Despite the simplicity of the general ide® threpresents a hypothesis about the system state. O of
dynamic environment representation remains a challengifghin advantages of the particle filter based solutisrthe
problem. Usually, the surrounding world is more complexpility to handle non-linear systems and multi-modal

and the tracking process is influenced by several fastas

distributions. However, particle filters are not sboiéa for

as the unpredictable and deformable nature of the dmtaChigh-dimensionm state spaces as their computational

the measurement uncertainties or the occlusions.idsing

complexity tends to grow exponentially with the number of

the above, an environment perception system must be@bl state parameters. In order to handle this problemreliffe

track multiple objects at the same time, with high emcy
and confidence.

The tracking systems can be classified by the type B
sensors they use. Most techniques rely on the use

ultrasound [4], laser [2] or vision sensors [5][6]. Savhéhe

existing strategies imply directly tracking 3D point clouds [5
by treating each point independently, whereas other moti
estimation techniques try to minimize the computationsi co
by using intermediate representations. The 3D informasio

transformed into digital elevation maps [14], octreefl[A]
occupancy grids [13] or Stixel Maps[15].

strategies can be found in the literature. For exgnipld 9]

the Unscented Kalman Filter is used to propagate the
foposal distribution so that the number of sampled pesticl
Is¢reduced. In [20] the Rao-Blackwellized Particle Filter
(RBPF) is introduced. The key idea of the RBPF appraach i
hat a part of the state space can be updated anaiyticall
ggﬂ‘uile another part of the state is sampled. In [2H,RBPF

IS applied for Simultaneous Localization and Mapping
(SLAM). The robot pose is estimated with a partidterf In
addition, the state vector is representedbgndmarks. Each
landmark position is updated by using a 2x2 Extended
Kalman Filter (EKF). In [2], a RBPF technique is applied

Many of the tracking solutions use high level attributesnodel based vehicle tracking. For simplicity the vehicl
including polygonal models [7], difference fronts [8], voxelshape is approximated by a rectangle.

[10], 2D boxes, 3D cuboids [6] or object contours [11]. Most
of them work well in structured environments, where th% ,

obstacle’s geometry is known. Usually, the traffidtess are

represented by simplistic models such as bounding boxes
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dynamic parameters and its estimated geometry. Wedsansi
that each obstacle model is represented by a polylifeNvit
vertices (control points). In order to solve the high
dimensionality state-space problem a Rao-Blackwellize
Particle Filter is used. Therefore, in our case, dhstacle
dynamic properties are estimated by importance sampli
while the geometric properties are computed analytitally
using a Kalman Filter for each key point. The propose
method takes into consideration the stereo uncertaiatids
relies on a weighting mechanism based on the partic
alignment error.

The paper is structured as follows: the next chapt
presents the overall system architecture, the objettel is
described in the chapter Ill, chapter IV shows howda&@
association is made, the proposed multiple object trackii
approach and its main steps are detailed in the chapter
while the last two sections show the experimentalliseand
the conclusion about this work.

The system architecture (see Fig. 1) can be separdited |
two main stages: Preprocessing and Tracking.

SYSTEM OVERVIEW

ThePreprocessingnodule performs a set of tasks prior tc
object tracking. First, image pairs are acquired froentwo
cameras. Then, stereo reconstruction is performed avith
dedicated TYZX board [1]. The raw dense stereo informatic
is then used to compute an intermediate classified grig ma
[12]. Each grid cell is labeled based on its heightrédion
as: road, traffic isle or obstacle. The intermediat
representation is used to extract object delimiters and
compute a probabilistic measurement model.

The Tracking stage consists in estimating the optima
state parameters. First, the data association isrpesd in
order to assign new measurements to the existing track
and to initialize new ones. Then, for each existingviddal
tracker the following processing steps are applied:e ste
prediction, Kalman filtering of object geometry, particle
weighting, estimation, resampling and injection. These ste
will be detailed in the next sections.
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Figure 1. System Architecture

Figure 2. Object Model. An object from the traffic scene épresented by

. . N control pointsP.. (polygonal vertices), and a reference pé&iat.
in assigning new P e (polyg ) P

observations to _th_e existing targets. In our case Werper measurements. Therefore, an object model (see 2Fidg
the data association b_y computing overlapping SC®ES described by the following properties:
between occupancy grid blobs (set of connected cells) at

consecutive time steps. As the result, an associatanxm -
W ={w;} is formed. The cases when larger blobs are

decomposed into many disjoint parts and vice vensa
treated as separate tracking hypotheses. The sistaiation
approach is described in details in [3].

IV. OBJECTMODEL

Unlike other methods where objects are represeoyed
fixed templates, we have adopted an approach ichamve
consider that the object geometry may change aver due
to factors such as occlusions caused by crossistadbs,
the dynamic nature of the environment, or noisy

A local reference poin.¢s denoting the obstacle position
in the camera coordinate system. The referenced in
initially set to the object center of mass , and is
subsequently estimated by the tracking mechanism.

The object speed vectut(v,,v,)

A set of control pointskK ={P!(x!,z.)|i = [1.N_]}
specifying the object shape, and defining the eestiof a
polygonal line. In the initialization step the cattpoints

are determined by selectifyequidistant points along the
object contour. For each control poiRt(x!,z.) we also

compute its relative position'(l!,I!) to the reference
pOintPref (Xref ! Zref) .



In our case the used coordinate system has itg1arig using a 2x2 Kalman filter. The particle set can rmmv
front of the ego-car. Th¥ axis points to the right while th® defined as:
axis points towards the ego-car moving direction. _ N -
Considering the notations above, at a tirtfee obstacle state {a la; =[X{w;, (L, )., '} ®)
is defined as: . . .
where i =[L.N] andj =[1..N_]. Next, we will present the

— 19122 N N1qT . . . . . .
St = [Xeet  Zier Vi Vo s 50 101 LT (1) main steps involved in our object tracking solution
V. OBSTACLE TRACKING B. Initialization

A Bayesian solution to the tracking problem corssist The initialization step is applied when new (netcied)

estimating the current object stee from a set of noisy Candidates are detected. This is achieved by comgpére
observation®,. ={Z,,Z,....Z,} up to the time: list of associated blobs with the existing list inflividual
1t T 11524t )

trackers. First, the motion parameters describirgy initial
_ state are estimated by applying a fast pairwiggadent of
P(§12,,2,..-2) =hp(Z, | S) the associated delimiter pairs (from the previous eurrent
(2) frames). For this, we use the lterative CloseshtPQCP)
P(S 1S.0)PS.1124204) algorithm described in [3]. Then, a set of initi@ndom

S1 object hypotheses are generated around the measirem

where /7 is a normalization constant. The(z, | S,) term  POsition{qq |y =[Xg, W, Go]",i = [L.N]} . Each particle
denotes theneasurement modet a timet and p(S |S.,) is initialized with the object geomei@ that is extracted

describes thestate transition mode{motion model) from from the measurement delimiters. It must be noted &
S, 10S. small amount of new particles (including new hypsts for

t object position and geometry) are added in thecfige step.
A. Rao-Blackwellized Particle Filter

C. Prediction
In a particle-based filtering solution [16][18] tlubject . L -
state probability is approximated by a setNofweighted This step consists in predicting the current stgteat

particlesp(S) »{S',w/,i =[L.N]} . Each particle § time t given the previous informatiog, , and the motion

represents a hypothesis of the state of the objeatgiven modelp(S |S.,)- First, the particles are moved by applying

time t. Therefore, object tracking consists in estimating a deterministic drift based on the target dynaniiben, each
best state by evaluating the sampigsand their attached predicted sample state is altered according todora noise.

weightsy/, given a motion model and a measurement model. We also must take into account the ego-vehicleonai
) ) ) o ) order to extract its speed from the independentuaiyos of
A disadvantage of the classical particle filteraigorithm e tracked objects. In our case, the vehicle spetl the

is that it is not suitable for high-dimensionaltstapaces. yaw ratey are obtained from the car sensors. By following

Usually, its computational complexity grows expatiedty . . .
with the number of parameters. The “Rao-Blackwation” the ego-vehicle motion moqel with constant yaw raael
constant speed, the particle positionk.,z) are

process consists in estimating a part of the obgtate
analytically, thus reducing the number of dimensiand the transformed according to:
computational cost of the particle filter mechanism our
case, the obstacle st&és split into two parts:
X f_c
S =[X,.G]" 3) ot =
' ' Zref _C Slny Cosy Zl’ef E Slny

coyy -siny X oy ©6)

where the first componenX, =[x,z ,v,,v,]’ describes

the obstacle position and speed and the compong@erep is the time delay between two frames gnety Dt

G, =[1 15,1517, 05,11 denotes the object geometry.rgpresents the vehicle rotation angle aroundrties.
The overall posterior distributiop(X,,G, |Z,,) defined by

, . The position and velocity, = Tof each
Equation (2) is factored as: P O =[xt Zeer Vi Ve

particle is predicted by using the standard constatocity
P(X\.G 1Zy) = (X, 1Z,)P(G | X, Zy)  (4)  model:

The first probability distributionp(X, |Z,,) denotes the X of 10D 0 x,,
objgct position and yelqcity, and is approximatgdatset of z,, 01 0 Dt Zref_c @
weighted samplg,,w!,G/,i = [L.N]} . The second term v = 00 1 0 v_ +w

G, | X,,Z,.)represents the object geometry posterior X X
p( t | ts 11) p { 9 yp \Y 00 O 1 \'%

conditioned orX, . Each control point irG, is described by a e o o
The matrix multiplication describes the determinidrift

mean value and a covariance mafiix, ') estimated by component. The stochastic part is defined by theam



2
z°%xs 5, %X
s,= 4 s,=2= 9)
b xf z
Wherex andz are the real world coordinates of a pofnt,
denotes the focal length,is the stereo system baseline and
s 4represents the disparity error.

3) Kalman Filtering: This step consists in updating the
particle geometry componenthi with the new
measurements. For each control point we use a 2k2df
filter to estimate its statd/ = [IXJ',IZJ']T and covariance'.

The Kalman filter observations are determined byctieagN
equidistant points along the object delimiter eotied in the
step 1. For each control point, the measuremerdrizmce
matrix Ris computed, by considering the stereo unceréinti
defined in the step 2.

4) Computing the distance to the measurem&he aim
of this step is to determine the closest correspgnd
measurement points for each occupancy grid cett, Rive
define a region of interest that covers all thetiglar space
around the measurem@)_. . ... Then we compute a

modified Distance Transform (see Fig. 3.c). Eachntpo

Figure 3. a) Left camera image. b) The occupancy grid prefeain the  m, (x, ,z,.) from the distance map will be described by
ground plane. The obstacle delimiters are coloreth \green. c) The
Distance Transform of the extracted delimiters.Tde density map is two values: a distancem = \/(de - Xdel)2 +(z,, - Zdel)2 to

generated by taking into account stereo uncerésirgind distances to the . . ..
closest delimiter points. High intensities indicatégh measurement the nearest delimiter pOII’ttj (X4e1» Z4e) » @Nd a position of

probability. the respective corresponden¢g, ,z,,). The probability

noisew ~ N (0,Q) which is drawn from a zero mean density map (see Fig. 3.d) can be determined nowedoh

Gaussian distribution with covarian@®. The covariance Cell my, by converting the distance values according to:
matrix Q is estimated considering a certain covariancéhfer , ,
obstacles’ acceleration. 1 1 (xdm-zdeo +M

2

e o s (10)

\
y

d)

D. Measurement update Pz

The purpose of this stage is to assign new weightise
predicted particles based on the measurement meust, where s and s represent the stereo uncertainties of the
the object delimiters are extracted from the curre i i
occupancy grid. Then, the new object geometry dategul by Corresponding measurement point.
using a Kalman filter. Finally, new particle weightre 5) Weighting:This step consists in assigning new weights
computed by evaluating the alignment error betwéen / to the delimiter hypothesay based on their likelihood:
measurement and existing hypotheses.

B 2ps.s,

1) Extracting Object DelimitersAt each frame, object P(Z | X, =X{,G, =G) (1)
delimiters are extracted from the occupancy grée (8ig. 3) First, we need to define a distance metric betveegiven
by using theBorderScanneralgorithm that is described in particle and a given observation. This is achiewsd
[9]. The main idea of thdorderScannerapproach is t0 estimating an alignment error between object hygssth and
generate an object CONtO@, g emen DY S€lECting the most e measurement data. For each control phinfrom the
visible object cells,. This is achieved by considering aparticle g we determine the closest corresponding pojnt

virtual ray which extends from the observation pamd from the measuremerg
moves in a radial direction with fixed incremertd. each
step the closest occupied grid @fio(c ) =trueis chosen as d(L’,C

the delimiter point.
C ={c |0cdc) =trugil LM} (8)

measuremen

measuremen’

min d(L',c,) (12)

measuremel) K {l.NC}

In order to consider the stereo uncertainties va» al
assign a density valugp! to each corresponding pair

2) Computing Stereo Uncertaintie$he next step is 0 (i . y. The Euclidean distance(L'.C and the
compute the stereo uncertainties. If we considet the (Lc) (L' Concasureme

stereo-vision system is rectified, then for eadd gell we Weight p! metrics are determined by superimposing the
can estimate a depth errgy and a lateral erras



particle model on the two maps estimated in theipus
step. The alignment error is computed according to:

_epld(L,C
alignment — N,

=1 pk

L

k=1

(13)

measu remar‘)

D

Finally, the overall particle Weighl\/ti is computed:

2
_ } Dalignment
i 2 s?

W = (14)

e
2ps

E. Estimation

The current mean state at times estimated by using a

weighted average:
~ N . .
S=  wS§

i=1

(15)

F. Resampling and Injection

The resampling step consists in drawing from th

previous particle set with a sampling probabilitggortional
to the assigned weights. Thus, the particles witv |
importance are removed while the samples with largjghts
are replicated.

However, there are cases when sharp changes in
traffic scene may lead to the estimation of errosestates.
This may happen due to the fact that there areufficient
hypotheses in the vicinity of the true state (pheti
deprivation problem). As the solution, we introddican
Injection step where a small amount of particlethiow

importance are replaced with new completely randoffigure 4. Multiple Object Tracking. a) An image of a traffacene. b)

samples that are drawn around the measuremenugdrtbe
Injection step we also introduce new hypothesesofject
geometry.

VI.

The proposed object tracking approach was tested
various sequences of urban traffic scenes, inaugartially
visible obstacles of different type, size and shayée
performed our experiments on a computer equippéu avi
Intel Core 2 Duo E6750 CPU at 2.66GHz and 4GB oWVRA
The occupancy grid used in our solution has a uéeal of
240 rows x 500 columns (0.1 m x 0.1 m cells).

EXPERIMENTAL RESULTS

Fig. 4 shows the results of the proposed objeckimg
method, including intermediate steps and the fiealilts. In
Fig. 4.b is presented a case when the initialinaitep is
applied for all objects. Usually, this occurs at theginning
of a traffic sequence, when the list of individti@ckers is
empty. Fig. 4.c illustrates the same test scentawio,frames
later. It can be observed that particles are dedtaround
each individual tracked object. The estimated nmstate is
colored with light blue. The predicted samples eokred
with magenta. The picture also illustrates theuigrfice of
weighting and resampling steps (dark blue) on tieelipted
population of particles. Fig. 4.d shows a particakse when
the initialization step is applied to a newly dételdtracker. A
set of initial random object hypotheses (red colarg
generated around the measurement position. Irbkids

Particle Filter Initialization step. c) Individuabject tracker particles. d)
The initialization step is applied to a new detddiacker. e) The resulting
dynamic object representation.

Figure 5. Comparative results between the measurement defirthtue)
and the analytically tracked geometry (red).

shown the resulted dynamic object representati@ecdan
the extracted object delimiters. The object hejgluperties
are inherited form the occupancy grid blobs anduaesl as
an additional cue when generating 3D polygonal nsode
Each detected obstacle is color coded, the colog hu
describing the orientation of a moving obstaclejlevithe
saturation describes its speed (e.g. yellow —nfooring



Figure 6. Object speed estimation. Comparison between RBP$edba

motion estimation (red color) and a cuboid basedking method (green
color).

objects, blue — for outgoing objects). Fig. 5 pnese

comparative results between the measurement dalimi

(blue) and the analytically tracked geometry (redy. 6

shows a comparative result between the RBPF bagedt o
motion estimation method and a Kalman filter basdubidal

tracking solution [6]. The test implies a crossusdpicle that

is in the field of view for only 25 frames. It che observed
that the proposed RBPF tracking technique is abf@dvide

the speed estimation results earlier, compared wWith

cuboidal based tracking method which uses a pitsrie
step in order to validate a new tracker. The timdgomance
of the algorithm depends on the number of trackgdcts,

the number of used particles per object and thebeurof

control points per model. The algorithm complexstales

linearly with the number of trackers. In our tes¢gjuences,
the average number of tracked objects was 6. Fbr @aject

we set up a fixed number of 80 particles and alfixember

of 20 control points per sample. The average psitgdime

of the algorithm was about 99.83ms per frame.

VII. CONCLUSIONS

In this paper we proposed a stereo-vision basecbagp
for tracking multiple objects in urban traffic segivs. The
solution is based on the information provided yessified
occupancy grid. Unlike the other existing methobiat t
consist in tracking fixed models, we propose aigarfilter

based solution for tracking free-form obstaclé!

representations. At each step the particle statessribed by
two components: the object dynamic parameters, iend
estimated geometry. In order to solve the high-dsranality
state-space problem a Rao-Blackwellized solutiomsed,
where the obstacle dynamic properties are estimhted
importance sampling while the geometric propertes
computed analytically by using a Kalman Filter éarch key
point. Inspired by the laser based scan matchicloniques
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