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Abstract. Modeling static and dynamic traffic participants is an important 

requirement for driving assistance. Reliable speed estimation of obstacles is an 

essential goal especially when the surrounding environment is crowded and 

unstructured. In this paper we propose a solution for real-time motion 

estimation of obstacles by using the pairwise alignment of object delimiters. 

Instead of involving the whole 3D point cloud, more compact polygonal models 

are extracted from a classified digital elevation map and are used as input data 

for the alignment process.  
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1   Introduction 

In the context of Advanced Driver Assistance Systems, modeling static and dynamic 

entities of the environment is a key problem. The detection of moving traffic 

participants is an essential intermediate step for higher level driving technology tasks 

such as collision warning and avoidance, path planning or parking assistance. The 

problem of dynamic environment representation becomes even more difficult when 

the surrounding world is unstructured and heterogeneous, including the cases of 

crowded urban centers, traffic intersections or off-road scenarios. The representation 

component may be influenced by several factors: noisy measurements, occlusions, 

wrong data association or unpredictable nature of the traffic participants. In such 

complex environments, a driver assistance system should be able to detect other 

moving traffic entities in real-time and at a high accuracy. 

Usually, the classic approaches of dynamic obstacles detection and tracking consist 

in extracting a set of features from the scene and estimating the motion from their 

displacement. Current solutions can directly use 3D points [1], or they can track high 

level attributes such as 2D boxes or 3D cuboids [2], stixels [3], free-form polygonal 

models [4], object contours [5][8] etc. 

The dynamic obstacle modeling solutions can be classified by the nature of used 

sensors. The most common used sensors are vision based [2], laser [6][7], sonar [9] or 

radar. The motion estimation techniques are also distinguished by the level at which 

the dynamic features detection is applied. Some of the existing methods rely on 



computing motion before generating a model [10][12], while other methods are based 

on extracting some attributes and subsequently estimating their dynamic parameters 

[2][4][5].  

Many of dynamic object detection solutions use intermediate representations as 

primary information. A common practice is mapping 3D information into occupancy 

grids [10], digital elevation maps [11] or octrees [9].  

The data association and identifying correct correspondences steps play an 

important role in estimating the motion of the traffic entities.  One of the widely used 

methods for model fitting in the presence of many data outliers is the RANSAC 

algorithm [13].  However, its accuracy depends directly on the number of used 

samples. This may lead to a high computational cost. 

Direct matching solutions such as Iterative Closest Point (ICP) [14] algorithm are 

most common for vehicle localization and mapping [4]. In [15] the convergence 

performance for several ICP variants is compared. An optimized ICP method that 

uses a constant time variant for finding the correspondences is presented.  In [4] a 

moving objects map is segmented by assuming that dynamic parts do not fulfill the 

constraints of the SLAM. However, the most of scan matching methods do not take 

into consideration the ego-motion parameters. The data association of objects in 

subsequent scans is hard to be achieved when the traffic participants or the ego 

vehicle moves at high speeds or when the measurement uncertainties are not taken 

into account. 

We propose a solution of representing the dynamic environment in real-time by 

using the pairwise alignment of free-form delimiters and considering the advantages 

provided by a stereovision system, by inheriting the object information from the 

intermediate representation. Instead of registering the whole 3D point cloud, our 

method is based on extracting the most visible object cells from the ego car and using 

them as input data for the alignment process. We propose an extension of the classical 

ICP algorithm by applying a set of improvement heuristics: 

• The data association is one of the problems of the classical scan matching 

techniques. It’s hard to estimate the correspondent models from previous scans 

only based on the proximity criterion. In our case we introduce a pre-processing 

step. First, we find the correspondence pairs between the model set (contour 

extracted in previous frame) and the measurement set (current frame results) by 

finding similarities between object blobs and passing this information at the 

contour level. Then, a list of associated contour candidates is generated and is used 

as the input for the next steps of the alignment; 

• For the registration process we use free-form polygonal models that minimize the 

erroneous results caused by occlusions, or by stereo reconstruction errors. The 

main idea is that we are taking into account only the most visible points from the 

ego-vehicle by performing a radial scanning of the environment [16]; 

• The previously extracted speeds are used as the initial guess for the ICP algorithm; 

• In order to filter the alignment outliers, a rejection metric that includes stereo 

uncertainties is proposed; 

Our method is based on information provided by a Digital Elevation-Map, but can 

be easily adapted for other types of intermediate representations. 

The remaining of the paper is structured as follows: Section 2 introduces the 

architecture of the proposed dynamic environment representation. Section 3 presents 



the pre-processing module with a group of necessary tasks for extracting object 

dynamic properties. In section 4, the main steps of the motion estimation component 

are detailed. The last two sections show the experimental results and conclusion about 

this contribution. 

2   System Architecture 

The dynamic environment representation method has been developed and adapted for 

crowded environments such as urban city traffic scenes. In this paper we extend our 

previous Dense Stereo-Based Object Recognition System (DESBOR) [22]. The 

system architecture (see Fig. 1) could be divided in four main blocks: data acquisition 

and 3D reconstruction, intermediate representation, pre-processing, and motion 

estimation. 

 

Fig. 1. System Architecture. 

Data acquisition and 3D reconstruction is the first level of the processing flow. 

At this stage the images are acquired from the two cameras, then the 3D 

reconstruction is performed using a specialized TYZX [17] board. The resulted point 

cloud is used as the input information for computing the Digital Elevation Map. 

Intermediate representation: the raw dense stereo information is mapped into a 

Digital Elevation Map (see Fig. 2). The resulted intermediate representation contains 

three types of cells: road, traffic isle and object. The cells are labeled based on their 

height information. More details about the Elevation Map are presented in [18]. 

Pre-processing: The pre-processing level groups a set of basic tasks that are 

performed prior the ICP algorithm. At this phase, the object contours are extracted by 

radial scanning of the Elevation Map. For the delimiters extraction we use the Border 



Scanner algorithm previously developed by us [16]. We apply the ego-motion 

compensation for the Elevation Map and contours that are extracted in previous 

frame, assuming that we know the odometry information. The ego-vehicle motion is 

compensated in order to separate its speed from the independent motion of the objects 

in the traffic scene. Another pre-processing task is to associate the polygonal models. 

The data association is achieved by using the maximum overlapping score of the 

Elevation Map blobs. Considering that each polygonal model inherits the blob type, it 

also inherits the blob association information. 

 

Fig. 2. a) An urban traffic scene. b) The Elevation Map projected on the left camera image.     

c) A compact representation of the environment. d) The top view of the Elevation Map. The 

Elevation Map cells are classified (blue – road, yellow – traffic isle, red – obstacles).  

 

Fig. 3. Coordinate System. 

Motion Estimation: As the result of the pre-processing level, a list of candidates is 

provided for the ICP module. Each candidate represents a pair of associated contours 

in the previous stage. For each candidate, a rotation and a translation is estimated by 



the ICP algorithm. Then the computed motion information is associated to the static 

polygonal models. A dynamic polyline map is generated as the result. Each polyline 

element is characterized by a set of vertices describing the polygon, position, height, 

type (traffic isle, obstacle), orientation and magnitude. 

In our case the two cameras are placed on a moving vehicle. We use a coordinate 

system where the z axis points toward the direction of the ego-vehicle, and the x axis 

is oriented to the right. The origin of the coordinate system is situated in front of the 

car (see Fig. 3). 

3   Pre-Processing Level 

The pre-processing stage consists in performing necessary tasks prior the motion 

estimation. First, extracting a sufficiently generic model is needed. The extracted 

model should allow us the creation of fast subsequent algorithms and as well it should 

minimize the representation errors caused by noisy 3D reconstruction or by 

occlusions. 

A second task is to separate the ego-vehicle speed from the independent motion of 

the other objects in the traffic scene. This is achieved by compensating the ego 

motion. 

And finally, elevation map blob is labeled and is used in data association. As the 

result a list of pairs of contours is extracted and is provided subsequently to the ICP 

step. Thus, unlike the other classical methods that involve aligning the whole local 

maps at once, and then segmenting the dynamic obstacles from the static ones, we 

first associate the obstacles at the blob level and then apply the ICP for each 

associated candidate. 

3.1   Polyline-Based Environment Perception 

For the polyline based object representation we use the Border Scanner algorithm 

described by us in [16]. The main idea is that we are taking into account only the most 

visible points from the ego car and extract object delimiters by radial scanning of the 

Elevation Map. Our method is similar to a Ray-Casting approach. The proposed 

method consists in determining the first occupied point intersected by a virtual ray 

which extends from the ego-car position. The scanning axis moves in the radial 

direction, having a fixed center at the ego-vehicle position (the coordinate system 

origins). At each step we try to find the nearest visible point from the Ego Car situated 

on the scanning axis. In this way, all subsequent cells Pi are accumulated into a 

Contour List C, by moving the scanning axis in the radial direction: 

},...,{ 21 nPPPC =  (1) 

For each object Oi described by a contour Ci we apply a polygonal approximation 

of Ci by using a split-and-merge technique described in [19]. The extracted polygon is 

used to build a compact 3D model based on the polyline set of vertices as well as on 

the object height. A polyline based representation is described in Fig. 2.d. 



3.2   Ego-Motion Compensation 

Before estimating the motion of the traffic entities, the movement of the ego vehicle 

must also be taken into consideration. In order to compensate the ego motion in the 

successive frames, for each given point Pt-1(xt-1, yt-1, zt-1) in the previous frame, the 

corresponding coordinates Pt(xt, yt, zt) in the current frame are computed by applying 

the following transformation: 
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Where ( )ψyR  is the rotation matrix around the Y axis with a given angleψ , and tz  

is the translation on the Z axis. The rotation and the translation parameters are 

provided by the ego-car odometry.  It is considered that the translations on the X and 

Y axis are zero. 

3.3   Data Association 

This stage consists in finding the corresponding contours that identify a single object 

in consecutive frames. As each extracted contour describes an Elevation Map blob, 

finding the associated contour pairs is reduced to find a similarity between the object 

blobs.  

 

Fig. 4. The association between two set of blobs in the consecutive frames and the resulting set 

of associated pairs. 

For each object Pi from the previous frame and for each object Cj from the current 

frame we calculate an overlapping score Aij. The results are stored into a score matrix 



A={Aij}. Candidates with the highest score are taken into account in determining the 

associations between the two set of objects P and C.  

However the association problem may lead only to partial results in the cases when 

larger objects from the previous frame are split into smaller blobs in the current frame 

and vice versa. In order to find all possible pairs of candidates we perform two types 

of associations: a direct association (forward association) finding best overlapping 

candidates in the current frame for all blobs in the previous frame, and a reverse 

association (backward association) that finds best overlapped objects in the previous 

frame for all objects from the current frame (see Fig.4). The final list of candidates 

includes all distinct pairs associated in the two steps. 

4   Motion Estimation 

The object motion estimation module receives as input a list of associated contour 

pairs. For each distinct pair we compute correspondences between the two contours 

and estimate a rotation and a translation which minimize the alignment error. For the 

contour pairwise registration we use the Iterative Closest Point (ICP) method. The 

ICP algorithm was proposed by Besl and McKay [14] and represents a common 

solution especially for scan-matching techniques, but the idea could be adapted for 

any kind of models.  

For each contour pair that identifies the same object in the consecutive frames we 

define two set of points: a model set P={p1,p2, ..., pM} that describes the object 

contour in the previous frame, and a data set Q={q1,q2, ..., qK} that describes the 

object contour in the current frame. For each point qj from Q the corresponding 

closest point pi from P is found. We want to find an optimal rotation R and translation 

T that minimize the alignment error. The objective function is defined: 

∑
=

−+=
N

i

ii qTRpTRE
1

2
),(  

 

(3) 

where pi and qi are the corresponding point pairs of the two sets and N is the total 

number of correspondences. 

The proposed alignment method is described by the following main steps:  

1. Matching – for each point from data set, the closest point from the model set is 

found. A list of correspondent pairs is generated. 

2. Outliers Rejection – Rejecting the outliers that could introduce a bias in the 

estimation of translation and rotation.  

3. Error Minimization – estimating new transformation parameters R and T for the 

next iteration.   

4. Updating – having the new R and T, a new target set is computed by applying the 

new transformation to the model set. A global transformation Mg is updated with the 

new R and T values. 

5. Testing the convergence – compute the average point-to-point distance between 

the measurement set and transformed model set. Then test if the algorithm has been 

converged to a desired result.  If the error is greater than a given threshold, the 

process continues with a new iteration. The algorithm stops when the computed error 



is below the selected error threshold or when a maximum number of iterations have 

been achieved. 

Next we will detail each of these steps. 

4.1   Matching 

At this stage, for each point qi from Q we want to find the closest point from the 

model set P: 

),(min),(
}..1{
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Nj

i pqdPqd
p∈

=  (4) 

Usually this task is the most computationally extensive in the ICP algorithm. The 

classical brute force search approach has a complexity of )( pq NNO ⋅ , with Np being 

the number of points in P and Nq – the number of points in Q. In order to reduce the 

complexity to )log( pq NNO ⋅ many solutions employ a KD-Tree [21] data structure. 

In our case, for finding closest points problem, we use a modified version of Chamfer 

based Distance Transform [20] (see Fig. 5). 

 

Fig. 5. Distance Transforms and Corresponding Masks are computed for dynamic obstacles 

(left side), and for static obstacles (right side). Data contours (gray color) and model contours 

(white color) are superimposed on the Distance Transform image. Each contour point in the 

correspondence mask is labeled with a unique color. The colors in the corresponding mask 

identify uniquely the closest contour point (having the same color). 

A distance transform represents a map that has the property that each map cell has 

a value proportional to the nearest obstacle point. In our case, for each separate model 

contour we define a region of interest and compute the distance transform. The 

difference of our solution is that we use two maps: a distance map that stores the 



minimum distances to the closest points, and a correspondence map, storing the 

positions of the closest points (see Fig. 5). The correspondences from the model set 

are identified by superimposing the data contour on the two masks. 

4.2   Outliers Rejection 

The purpose of this stage is to filter erroneous correspondences that could influence 

the alignment process. We use two types of rejection strategies: rejection of pairs 

whose point-to-point distance is greater than a given threshold, and eliminating the 

points where the overlap between the two contours is not complete. 

4.2.1 Distance Based Rejection 

The classical strategy consists in rejection of pairs whose point-to-point distance is 

larger than a given threshold Dt: 

tji Dpqd >),(
 

(5) 

Because the stereo reconstruction error generally increases with the square of the z 

distance, the stereo-system uncertainties must be taken into account. As suggested by 

[10], if we assume that the stereo-vision system is rectified, then the z error is given 

by the following relation: 
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Where z is the depth distance, b is the stereo system baseline; f is the focal length 

and dσ denotes the disparity error. Thus, for each corresponding pair of points (pi,qi) 

from the two sets, the rejection is made if: 

ztji Dpqd σ+>),(
 

(7) 

This would mean that the rejecting threshold is increased at once with the z 

distance. 

4.2.2 Boundary Based Rejection 

The second type of rejecting is filtering the point correspondences caused by 

incomplete overlap between contours. Usually, these situations appear when one of 

the two contours is incompletely extracted due to occlusions, and may lead to 

incorrect alignments. A possible solution is to identify the subsets of points from Q 

that have the same correspondent point pj in P, and keeping only the pair with the 

minimum distance (see Fig. 6). 



 

Fig. 6. Rejecting the contour boundary. 

4.3   Error minimization 

In this step we determine the optimal rotation R and translation T by minimizing the 

objective function defined by Equation (3). 

The rotation matrix around the Y axis is linearized, approximating αcos  by 1 and 

αα ≈sin byα : 
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The translation vector is defined as: 

[ ]Tzyx tttT =  (9) 

We can rewrite the Equation (3) as: 
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The ),( TRE is minimized with respect toα , tx, ty, and tz by setting the partial 

derivatives to zero: 
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Therefore we can obtain the unknown coefficients: 
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4.4   Updating 

Assuming that we have estimated new R and T parameters in the previous step, a new 

target set is computed by applying the new transformation to the model set.  

Having the rigid body transformation matrix M: 
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 Each point pi from the model set P is transformed according to the following 

relation: 
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 Finally, a global transformation MG is updated:  

MMM
k

G

k

G ⋅=+1
 (15) 

4.5   Testing the convergence 

The error metric is estimated by computing the average Euclidean distance (AED) of 

every corresponding pair of data set Q and transformed model set. 
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If the error is greater than a given threshold, the process continues with a new 

iteration. The algorithm stops when the computed error is below the selected error 

threshold or when a maximum number of iterations have been achieved. 

5   Experimental Results 

The proposed dynamic environment representation method has been tested in 

different traffic situations. For our experiment we used a 2.66GHz Intel Core 2 Duo 

Computer with 2GB of RAM. Fig. 7 presents some qualitative results obtained in a 

dynamic urban traffic scenario.  

 

Fig. 7. a) An urban traffic scenario. b) The alignment result (red color) between the model 

delimiter extracted in previous frame (yellow) and the data contour, extracted in the current 

frame (blue). c) The virtual view of the scene. The static obstacles are represented with green 

delimiters while the dynamic obstacles are colored with red. The speed vectors are associated to 

each dynamic entity.  d) The representation result, projected on the left camera image. 

In Fig. 7.b the model delimiter that was extracted in previous frame is colored with 

yellow, while the data contour (extracted in the current frame) is drawn with blue. 

The result of the alignment is illustrated with red color. It can be observer that in the 

case of the incoming vehicle, as well as for the lateral static vehicles, the aligned 

model is superimposed almost perfectly on the data set. In the Fig. 7.c, the virtual 

view of the scene is shown. The static obstacles are represented with green delimiters 

while the dynamic obstacles are colored with red. The speed vectors are associated to 

the each dynamic entity (yellow color).  The representation result is also projected on 

the left camera image (see Fig. 7.d). We considered that the obstacles with a speed 

greater than 8km/h are dynamic. 

Fig. 8 shows a comparative result between the ICP algorithm that includes all 

correspondence points (blue color) and the alignment method that uses the Contour 

Boundary Rejection strategy (red color). We used the Average Euclidean Distance 

(AED) as the error metric. It can be observed that the ICP algorithm based on 



Boundary Rejection strategy converge more quickly than the ICP method without a 

filtering mechanism and proves to be more accurate having a lower alignment error. 

For our experiments we used a maximum number of 10 iterations. The average 

processing time was about 38 ms. 

 

Fig. 8. The computed Error Metric in the case of ICP algorithm that does not use outlier 

rejection and ICP method that uses a Boundary Rejection. 

6   Conclusions 

In this paper we propose a method of real-time representation of the dynamic 

environment by using the pairwise alignment of free-form models. Instead of 

registering the whole 3D point cloud, the most visible obstacle points from the ego car 

are extracted and are subjected to the alignment process. We extend the classical ICP 

algorithm with a set of preprocessing tasks. First, we associate the delimiters at the 

blob level. Then, a list of associated candidates is passed to the alignment stage. For 

the registration process we use free-form polygonal models that minimize the 

erroneous results caused by occlusions, or by stereo reconstruction errors. As future 

work we propose to improve the stability of the environment perception by extending 

our system with a temporal filtering of the estimated speeds. 
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