
  

  

Abstract— The environment representation is one of the main 
challenges of autonomous navigation. In the case of complex 
driving environments such as crowded city traffic scenarios, 
achieving satisfactory results becomes even more difficult. In 
this paper we propose a real-time solution for two main issues 
of advanced driver assistance systems: unstructured 
environment representation and extraction of dynamic 
properties of traffic participants. For the real-time environment 
representation we propose a solution to extract object 
delimiters from the traffic scenes and represent them as 
polygonal models. In order to track dynamic entities, an 
intermediate evidence map named “Stereo Temporal Difference 
Map” is proposed. This difference map is computed by 
comparing the occupancy of a cell between two consecutive 
frames. Based on the Stereo Temporal Difference Map 
information, difference fronts are extracted and are subjected 
to a particle based filtering mechanism. Finally, the provided 
dynamic features are associated to the extracted polygonal 
models. The result is a more compact representation of the 
dynamic environment. 

I. INTRODUCTION 

In the context of Advanced Driver Assistance Systems, 
the perception of dynamic environments is still an open 
problem. In order to represent the knowledge about other 
moving traffic participants, first we have to choose adequate 
models that accurately describe dynamic evolution in time, 
and also their geometrical shapes. In the case of the most 
complex driving environments such as crowded city traffic 
scenarios, acquirement of satisfactory results becomes even 
more difficult. A driver assistance system should be able to 
provide a digital model of the surrounding world in real-
time, and with a high accuracy and robustness. Also, the 
resulted representation should permit fast subsequent 
processing tasks. 

In the case of stereovision systems, which rely on passive 
sensors, the motion information cannot be provided directly. 
A common approach for tracking solutions consists in 
extracting desired features and estimating their motion over 
time.  Current solutions can be classified based on the level 
at which the tracking and representation is performed. In a 
simpler and clearly structured environment, the obstacles are 
usually modeled as 2D bounding boxes or 3D cuboids, and 
are described by their position, size and speed.  
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The model-based tracking is hard to be achieved when 
the environment represents a busy urban center or an 
intersection. The extracted geometrical models are 
influenced by the occlusions or by incorrect measurements. 
Therefore, any driving assistance system should be able to 
estimate the motion of the traffic entities regardless the 
choice of object representation. 

The literature provides several approaches to extract 
dynamic features independently from the object 
representation. Some of the proposed techniques are based 
on directly tracking 3D points [1], or more compact object 
features such as stixels [2]. Other methods estimate the 
obstacle motion by mapping 3D information into occupancy 
grids. 

One of the advantages of the occupancy grid is that it 
provides a mean of describing the relevant features of the 
traffic environment while maintaining a reasonable level of 
computation complexity. Occupancy grids were first 
proposed by Moravec and Elfes [3] as mapping method for 
sonar based robot navigation. In [4], the occupancy 
probability of each cell is computed by also taking into 
account the range sensors uncertainty. Te first described 
occupancy grids [3][4] are simple 2D representation of the 
environment where each cell’s value denotes a probability of 
it being free or occupied. However, the complexity increases 
once the velocity information is added to the state of each 
cell. A four-dimensional occupancy grid is proposed in [5]. 
This approach describes a cell by a position and a speed 
relative to the ego-vehicle. In [6], the grid representation is 
extended by modeling the velocity of each cell as a 
distribution which is inferred by using a filtering mechanism.  

However, most of the subsequent representation 
algorithms require a way of identifying individual dynamic 
entities based on the existent intermediary representation. 
This implies the necessity of extracting the object models 
from the occupancy grid. A good solution is to describe the 
object geometry by using free-form polygons. One of the 
advantages of this representation is the close approximation 
of the object contour by the polygonal model while having a 
number of vertices as small as possible, and including the 
static and dynamic features from the associated objects.  The 
polyline extraction methods differ by the nature of the 
information as well as by the sensors used for data 
acquisition process. Current systems use laser [7], [8], sonar 
[9], or vision sensors [9]. The polyline representation was 
chosen in [8] for terrain-aided localization of autonomous 
vehicle. The new range data obtained from the sensor are 
integrated into the polyline map by attaching line segments 
to the end of the polyline as the vehicle moves gradually. 
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This paper presents a novel approach for real-time 
environment representation and tracking by using a dense 
stereo-vision system. Two main issues of advanced driver 
assistance systems are addressed: unstructured-environment 
representation on the one hand and extraction of dynamic 
properties of traffic participants on the other hand. 

The proposed methods take into consideration the 3D 
information provided by a Digital Elevation Map as well as 
the ego-car parameters such as yaw rate and car speed.  

For the real-time environment representation we 
developed a method that extracts free form object delimiters 
from the traffic scenes by radial scanning of the Elevation 
Map. 

In order to track dynamic entities, an intermediate 
evidence space is generated by computing Differences 
between the two consecutive elevation map representations 
at different moments of time. We called this evidence space 
as Difference Map. Further we use a probabilistic approach 
for modeling the extracted difference fronts by using 
particles that move from cell to cell and are created and 
destroyed based on new measurements provided by 
Difference Map at each frame. Thus, unlike the classical 
approaches that directly track whole objects, we focus only 
on tracking the differences between two consecutive scenes 
without making assumptions about object shape or size. 
Finally, the provided dynamic features are associated to the 
extracted polygonal models. 

In the next section, we describe the proposed system 
architecture. Section 3 presents the dynamic environment 
representation solution by using polylines, Difference Map 
representation and the particle based modeling of difference 
fronts. The last two sections show the experimental results 
and conclusion about this contribution. 

II.  SYSTEM ARCHITECTURE 

Our method has been conceived and adapted for crowded 
unstructured environments such as urban city traffic scenes. 
The previously developed Dense Stereo-Based Object 
Recognition System (DESBOR) has been improved by 
including additional processing modules for Difference Map 
extraction and Particle Based Difference Fronts modeling. 
An overview about about the DESBOR system is presented 
in [10]. The Dynamic Environment Perception system 
consists in the following main modules (see figure 1): 

Reconstructed 3D Points: the 3D reconstruction is 
performed in real time using a dense stereo algorithm 
implemented on a GPU board [11]. The reconstructed 3D 
points are used as primary information for computing the 
Digital Elevation Map. 

Digital Elevation Map: the Elevation Map (see figure 2) 
represents an intermediary description of the scene and is 
computed from the raw dense stereo information. The 
Elevation Map contains three types of cells: road, traffic isle 
and object. More details about the Elevation Map are 
presented in [12]. 

 

 

Figure 1.  System Architecture.  

Ego Motion Compensation: the Elevation Map’s 
coordinates from the previous frame are transformed to the 
current frame, assuming that we know the ego car 
parameters. By compensating the ego motion we ensure that 
the two Elevation Map coordinate systems are aligned. 

Stereo Temporal Difference Map: an evidence map is 
computed by comparing the presence or absence of an 
Elevation Map cell at different moments of time. This 
process classifies each Difference Map cell as direction, 
shadow, or core cell. 

Difference Fronts: after the computation of the Difference 
Map, we define three types of areas for the moving objects: a 
direction front (the direction of the moving obstacle), a 
shadow front (usually located behind the moving obstacle), 
and a core area that remains unchanged in the consecutive 
frames. 

Particle Based Filtering: the extracted difference fronts are 
subjected to the particle based filtering. As the result a 
dynamic grid based on particles is produced. Each particle 
has a position and speed, and can migrate in the grid from 
cell to cell depending on its motion model and motion 
parameters. Grid particles are also created and destroyed 
using a weighting-resampling mechanism. We extend the 
previously developed algorithm [13][14], by using the 
difference fronts as measurement information. 

 



  

 

Figure 2.  a) A traffic scene. b) The Elevation Map is projected on the left 
camera image. c) Elevation Map, top view. The Elevation Map cells are 
classified (blue – road, yellow – traffic isle, red – obstacles). d) Polyline 
Based Environment Representation. The object types are inherited from the 
Elevation Map information (green – obstacles, yellow – traffic isles). 

Polygonal Models: the obstacles delimiters are extracted by 
radial scanning of the Elevation Map. At each step the first 
visible point from the ego-car is accumulated into a contour 
list, by moving the scanning axis in the radial direction. A 
more compact polygonal map is generated as the result. 
More details about the delimiters extraction method is 
presented in [15] 

Environment Representation Output: speed vectors, 
computed by the particle filtering step are associated to the 
static polygonal models. A dynamic polyline map is 
generated as the result. Each polyline element is 
characterized by a set of vertices, position, height, type 
(traffic isle, obstacle), orientation and magnitude. 

III.  DYNAMIC ENVIRONMENT REPRESENTATION 

In this section we present the main stages of the dynamic 
environment representation process. Most of the 
representation and tracking solutions in the literature rely on 
extracting an object model and subsequently inferring its 
motion over time. In our work we handle the unstructured 
environment representation problem and the motion 
estimation problem by independent modules. Thus, we avoid 
some additional intermediate processing steps for both cases. 
This approach allows us to extract dynamic features (speed 
vectors) regardless of the model chosen to represent the 
surrounding world and vice versa. Next, we describe each 
step of the proposed approach: 

A. Polyline Based Environment Representation 
For the polyline based object representation, we extend 

the Border Scanner algorithm described in [15]. The main 
idea is that we are taking into account only the most relevant 
scene information, by extracting object delimiters by radial 
scanning of the Elevation Map. Our method is based on a 
Ray-Casting approach, which determines the first occupied 
cell that intersects a virtual ray which is cast from the ego-
car’s reference frame origin. At each step we try to find the 
nearest visible point situated on the scanning ray. In this 
way, all subsequent cells Pi are accumulated into a Contour 
List C, as the scanning ray’s angle changes:  

 ),...,{ 21 nPPPC =  (1) 

For each object Oi described by a contour Ci we apply a 
polygonal approximation of Ci, using a split-and-merge 
technique. The extracted polygon is used to build a compact 
3D model based on the polyline set of vertices as well as on 
the object height. An example of the polyline representation 
is shown in figure 2.d. 

B. Stereo Temporal Difference Map 
We analyze the classified obstacle cells of the Elevation 

Map, in order to detect differences both at cell level, and at 
object level. The outcome of this analysis is the Difference 
Map.  

Before applying any reasoning about objects’ state at 
different frames, the movement of the ego vehicle must also 
be taken into consideration. In order to compensate for the 
ego motion in successive frames, for each given point Pt-1(Xt-

1, Yt-1, Zt-1) in the previous frame the corresponding 
coordinates Pt(Xt, Yt, Zt)  in the current frame are computed 
by applying a rotation and a translation: 
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Where ( )yyR  is the rotation matrix around the Y axis 

with a given angley , and Tz – is the translation on the Z 
axis. We assume that the translations on the X and Y axis are 
zero. 

For each cell in the previous frame we keep an evidence 
of its persistence at the corresponding position in the current 
frame. Thus, based on the presence or absence of the cell in 
the current frame, a Difference Map that stores the point 
differences between the two frames is built. We define three 
classes of cells (see figure 3): 

Direction cell – if a cell is empty in the previous frame, and 
occupied in the current frame. 

Shadow cell – the cells that are occupied in the previous 
frame and are empty in the current frame. 

Core cell – if the same cell is occupied in both frames. 

 



  

 

Figure 3.  Difference Map Cells are classified: direction – blue, shadow – 
red, core - green.  

C. Difference Fronts 
After computing the Difference Map we define three 

types of areas that describe the moving obstacles (see figure 
4): a direction front (the direction of the moving obstacles), a 
shadow front (usually located behind the moving obstacles), 
and a core area that remains unchanged in the consecutive 
frames. 

 

Figure 4.  Difference Fronts: Direction Front – blue, Shadow Front – red 
and Obstacle Core - Green.  

D. Particle Based Filtering 
In this step we use a particle-based filtering mechanism 

in order to estimate the difference fronts speed components. 
We use a probability model to produce a fully dynamic grid 
based on particles. We consider that each grid cell has a 
population of particles that have a dual nature:  they describe 
occupancy hypotheses, as in the particle filtering algorithms 
such as CONDENSATION [16], but can also be regarded as 
physical building blocks of our modeled world. The particles 
have position and speed, and they can migrate from cell to 
cell depending on their motion model and motion 
parameters, but they are also created and destroyed using the 
same logic as the weighting-resampling mechanism  

Considering a coordinate system where the z axis points 
towards the direction of the ego-vehicle, and the x axis points 
to the right, the obstacles in the world model are represented 
by a set of particles: 

 }...1),,,,,(|{ Siiiiiii NiavrvcrcppS ===  (3) 

Each particle i has a position in the grid, described by the 
row r i  and the column ci, and a speed, described by the 
speed components vci and vri. An additional parameter, ai, 
describes the age of the particle, since its creation. The 
purpose of this parameter is to facilitate the validation and 
the speed estimation process, as only particles that survive in 
the field for several frames are taken into consideration. The 
total number of particles in the scene NS dependent on the 
occupancy degree of the scene, that is, the number of 
obstacle cells in the real world. Having the population of 
particles in place, the occupancy probability of a cell C is 
estimated as the ratio between the number of particles whose 
position coincides with the position of the cell C and the 
total number of particles allowed for a single cell, NC. 
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The number of allowed particles per cell NC is a constant 
of the system. In setting its value, a tradeoff between 
accuracy and time performance should be considered. The 
total number of particles in the scene will be directly 
proportional with NC, and therefore the speed of the 
algorithm will be directly affected by its value. 

The speed of a grid cell can be estimated as the average 
speed of its associated particles, if we assume that only one 
obstacle is present in that cell.  
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Multiple speed hypotheses can be maintained 
simultaneously for a single cell, and the occupancy 
uncertainty is represented by the varying number of particles 
associated to the cell. The tracking algorithm can now be 
defined: using the measurement information in the form of 
elevation maps, it will create, update and destroy particles 
such that they accurately represent the real world. 

The first step of the algorithm is the prediction, which is 
applied to each particle in the set. The positions of the 
particles are altered according to their speed, and to the 
motion parameters of the ego vehicle. Also, a random 
amount is added to the position and speed of each particle, 
for the effect of stochastic diffusion. The second step is the 
processing of measurement information. The raw 
measurement data is derived from difference fronts. 

The measurement model information is used to weight 
the particles, and resample them in the same step. By 
weighting and resampling, the particles in a cell can be 
multiplied or reduced. The final step is to estimate the 
occupancy and speeds for each cell. A more detailed 

 
 



  

description of the particle grid tracking algorithm is given in 
[13] and [14]. 

E. Data Association 

This stage consists in assigning the speed vectors derived 
from the particle-based filtering to the polygonal models 
extracted from the Elevation Map. As each polygonal model 
directly inherits the object position and type, the problem is 
reduced to associating the tracked direction fronts to the 
Difference Map measurements. For each direction Front Fj 
in the occupancy grid space and for each entity Li in the 
Difference Map we calculate an overlapping score Cij. The 
results are stored into a score matrix C={C ij}. Candidates 
with the highest score are taken into account in determining 
the associations between the two sets F and L. 

IV. EXPERIMENTAL RESULTS 

The proposed representation and tracking technique has 
been tested in real traffic situations. For a more complete 
evaluation we have compared the obtained results with the 
Kalman filter-based, cuboidal model oriented tracking 
method presented in [17]. Figure 5 describes the dynamic 
environment representation steps, including the intermediate 
results. The Difference Map (figure 5.d) is obtained based on 
the Elevation Map results at different times (figure 5.a and 
b). The Difference Cells are classified as direction (blue), 
shadow (magenta), and core (light green). Figure 5.e shows 
the particle based occupancy grid obtained from Difference 
Map measurements. The extracted dynamic polylines and the 
associated speed vectors (yellow color) can be seen on the 
top view of the Elevation Map (figure 5.f). Figure 5.g shows 
the projection of the static (green color) and dynamic 
obstacles (red color) on the left camera image. 

For the numerical evaluation we have included the 
following traffic scenarios: an incoming vehicle and a 
stationary lateral vehicle. The obtained speeds are compared 
to the speeds obtained with the Kalman filter-based tracking 
approach. 

For the first test we have chosen a scenario with an 
incoming vehicle. The speed estimation values are shown in 
the figure 6. It can be observed that for this case, the values 
obtained by the particle filtering based technique (blue color) 
are close to the one obtained by a model based tracking 
method (magenta color). 

The second test includes a stationary lateral vehicle 
(figure 7). The target speed of 0 is given as the ground truth 
for the measurements. The difference fronts tracking 
approach (blue color) proves to be more accurate having a 
lower mean absolute error (2.18 Km/h) than the Kalman 
filter cuboid-based tracking solution (7.5 Km/h) drawn with 
magenta color. 

 

 

 

Figure 5.  Dynamic environment representation with the intermediate 
stages. The Difference Map (d) is obtained based on the Elevation Map 
from previous frame (b) and current frame (c). The Difference Cells are 
classified as direction (blue), direction (magenta), and core (light green). 
The particle based occupancy (e) is grid obtained from Difference Map 
measurements. The extracted dynamic polylines and the associated speed 
vectors (yellow color) are   shown on the top view of the Elevation Map (f). 
The static (green color) and dynamic obstacles (red color) are projected on 
the left camera image (g).  

For the experimental results we used a 2.66 GHz Intel 
Core 2 Douo computer. The average processing time of the 
proposed tracking algorithm was about 43ms. 

 



  

 
Figure 6.  Speed Estimation for an incoming vehicle (green color). The 
particle based filtering of difference front method (blue color) is compared 
with a Kalman filter tracking solution (magenta color).  

 
Figure 7.  Speed Estimation for a stationary lateral vehicle (green color). 
The results are estimated with particle based tracking of difference fronts 
(blue color), Kalman filter tracking (magenta color). The ego car speed is 
colored with green. 

V. CONCLUSIONS 

In this paper a novel approach for stereo-based real-time 
environment representation and tracking is presented. Two 
main issues of advanced driver assistance systems are 
addressed: unstructured environment representation, and 
extraction of dynamic properties of traffic participants. For 
implementing our algorithms we use, as primary information, 
the Digital Elevation Map representation.  

For the real-time environment representation the 
proposed solution extracts object delimiters from the traffic 
scenes, by radial scanning of the Elevation Map. In order to 
track dynamic entities, an intermediate evidence space is 
generated by computing differences between the two 
consecutive Elevation Map representations. We named this 
space the Stereo Temporal Difference Map. Further, we use 
a probabilistic approach for modeling the extracted 
difference fronts by using particles that move from cell to 
cell and are created and destroyed based on new 
measurements provided by the Difference Map at each 
frame. Instead of directly tracking all traffic entities, we 
focus only on the analysis and tracking of the differences 
between two consecutive scenes, without making 
assumptions about object shape or size. Finally, the provided 
dynamic features are associated to the extracted polygonal 
models. The result is a 2.5D compact representation of the 
dynamic environment. According to the experimental results 
the presented method achieves a high degree of accuracy. 

As future work we propose to focus our research in 
extending the concept of “Stereo Temporal Difference Map” 
by computing the evidence of the traffic scene over multiple 
frames. 
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